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Numerical Methods

• MATLAB provides many functions that 
support numerical solutions to common 
math problems:
– Integration and Differentiation (Calculus)
– Finding zeros of a function
– Solving ordinary differential equations
– Many others

• Numerical analysis provides answers as 
numbers, not closed-form solutions as in 
analytical solutions (see next lecture for 
symbolic math in MATLAB).
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The integral of f(x) is the area A under the curve of f (x) 
from x ==== a to x ==== b.  

� = 	� � � ��
�

�
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Illustration of Numerical Integration: (a) rectangular method 
and (b) more accurate trapezoidal method. 
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Example

>> x = linspace(0,pi,10);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9797

>> x = linspace(0,pi,100);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9998

trapz(x,y)

Uses trapezoidal 
integration to compute 
the integral of y with 
respect to x, where the 
array y contains the 
function values at the 
points contained in the 
array x.

� � � sin � ��
�

�

� 	cos � �

� � 1 	 	1 � 2
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Simpson’s Rule

• Another approach to 
numerical integration is 
Simpson’s Rule, which 
divides the integration 
range [a, b] into an even 
number of sections and 
uses a different 
quadratic function to 
represent the integrand 
for each panel.
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quad(fun, a, b)

quad(fun, a, b, tol)

quadl(fun,a,b)

dblquad(fun, a, b, c, d) 

triplequad(fun,a,b,c,d,e,f)

Uses an adaptive Simpson’s rule to compute 

the integral of the function whose handle is 

fun, with a the lower limit and b the upper 

limit.  The function fun must accept a vector 

argument. The parameter tol is optional, and 

indicates the specified error tolerance.

Uses Lobatto quadrature to compute the 

integral of the function fun. The rest of the 

syntax is identical to quad.

computes the integral of f(x,y) from x = a to b, 

and y = c to d. The function fun must accept a 

vector argument x and scalar y, and it must 

return a vector result.

computes the integral of f(x,y,z) from x = a to 

b, y = c to d, and z = e to f. The function must 

accept a vector x, and scalar y and z.

Important numerical integration functions:
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Although the quad and quadl functions are 

more accurate than trapz, they are restricted to 

computing the integrals of functions and cannot be 

used when the integrand is specified by a set of 

points.  For such cases, use the trapz function.
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MATLAB function quad implements an adaptive 

version of Simpson’s rule, while the quadl function is 

based on an adaptive Lobatto integration algorithm.

To compute the integral of sin(x) from 0 to π, type

>> A = quad(@sin,0,pi)

The answer given by MATLAB is 2.0000, which is correct. 

We use quadl the same way; namely,

>> A = quadl(@sin,0,pi).
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To integrate cos(x2 ) from 0 to 2�, create the function in 

an m-file: 

function yy = cossq(x)

yy = cos(x.^2);

Note that we must use array exponentiation. Then quad

function is called as follows:

>> quad(@cossq, 0, sqrt(2*pi))

ans =

0.6119

Or you can use an anonymous function:

>> f = @(x)(1./(x.^3 - 2*x - 5));

>> quad(f, 0, 2)

ans =
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A = dblquad(fun, a, b, c, d) computes the integral of f(x,y)

from x = a to b, and y = c to d.   Example: f(x,y)  = xy2.

>> fun = @(x,y) x.*y^2;

>> A = dblquad(fun, 1, 3, 0, 1)

A =

1.3333

A = triplequad(fun, a, b, c, d, e, f) computes the 

triple integral of f(x,y, z) from x = a to b, y = c to d, and z = e to f.   
Example: f(x,y,z)  = (xy -y2)/z.

>> fun = @(x,y,z)(x*y - y^2)/z;

>> A = triplequad(fun, 1,3, 0,2, 1,2)

A =

1.8484

Note: The function must accept a vector x, but scalar y and z. 

Double and Triple Integrals

��� �, � ����
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�
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Be careful: function singularity

>> f = @(x) ( 1./(x-1));

>> quad(f, 0, 2)

Warning: Infinite or Not-

a-Number function value 

encountered. 

> In quad at 113

ans =

NaN
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Numerical differentiation: Illustration of estimating the 
derivative dy////dx. 

��
�� � lim

∆�→�

∆�
∆�

��
�� � �� 
 ��

�� 
 ��
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MATLAB provides the diff function to use for computing 

derivative estimates.

d = diff(y), where y is a vector of n elements, the 

result is a vector d containing n − 1 elements that are the 

differences between adjacent elements in y. That is:

d=[y(2)-y(1), y(3)-y(2),..., y(n)-y(n-1)]

For example:

>> y = [5, 7, 12, -20];

>> diff(y)

ans =

2     5   -32

14



Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

step = 0.001;

x = 0 : step : pi;

y = sin(x.^2);

d = diff(y)/step; 

% an approximation 

% to derivative

% 2.*x.*cos(x.^2)

plot(x,y,'k',x(2:end),d,'--');

legend('f(x)', 'df/dx');
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Ordinary Differential Equations

• An ordinary differential equation (ODE) is an 
equation containing ordinary derivatives of 
the dependent variable. 

• An equation containing partial derivatives 
with respect to two or more independent 
variables is a partial differential equation 
(PDE). 

• We limit ourselves to ODE that must be 
solved for a given set of initial conditions.

• Solution methods for PDEs are an advanced 
topic, and we do not look at them. 
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Several Methods

• Several numerical methods to solve ODEs.
• Examples include:

– Euler and Backward Euler methods
– Predictor-Corrector method
– First-order exponential integrator method
– Runge-Kutta methods
– Adams-Moulton methods
– Gauss-Radau methods
– Adams-Bashforth methods
– Hermite–Obreschkoff methods
– Fehlberg methods
– Parker–Sochacki methods
– Nyström methods
– Quantized State Systems methods
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Multiple Solvers

• MATLAB offers multiple ODE solvers, each uses 
different methods.

• Ode23: Solves non-stiff differential equations, low 
order method.

• ode45: Solves non-stiff differential equations, 
medium order method: uses a combination of fourth- and 
fifth-order Runge-Kutta methods.

• ode23s: Solves stiff differential equations, low order 
method.

• ode15i:  Solves fully implicit differential equations, 
variable order method.

• And so on.
• We will limit ourselves to the ode45 solver.
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Example: Find the response of the first-order RC circuit . 

� ���	 + � = 0

� 0 = 
�			(�.
. )

� ���	 + � = 
�

� 0 = 
�			(�.
. )

�(	) = � 0 ��	/
		(��	����	��������)

� 	 = 
� + (� 0 − 
�)��	/
		(	�	��	��������)

�� 	 =
��
�	

�� 	 =
���
�	�
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Solving First-Order Differential Equations

First write the equation as dy/dt = f(t,y) then solve it using this syntax:

[t,y] = ode45(@f,tspan,y0)

where @f is the handle of the function file whose inputs must be t and 

y, and whose output must be a column vector representing dy/dt; that 
is, f(t,y).  The number of rows in the output column vector must equal 
the order of the equation. 

The array tspan contains the starting and ending values of the 

independent variable t, and optionally any intermediate values. 

The array y0 contains the initial values of y. If the equation is first 
order, then y0 is a scalar.
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The circuit model for zero input voltage �	 and � = 0.1 is: 

0.1 ×
��
�� + � = 0

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:


�


�
= −10�

Next define the following function file. Note that the order 

of the input arguments must be t and y.

f = @(t,y) -10*y;
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The solver is called as follows, and the solution plotted along 

with the analytical solution y_true.  The initial condition is 

�(0) = 2.

f = @(t,y) -10*y;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 2*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate 

y_analytical, because t is generated by the ode45

function. 

The plot is shown on the next slide.

22



Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Free (natural) response of an RC circuit 
(decaying exponential).
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The circuit model for input voltage �	 = 10� and � = 0.1: 

0.1 ×
��
�� + � = 10

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:

��
�� = −10� + 100

Next define the following function file. Note that the order 

of the input arguments must be t and y.

f = @(t,y) -10*y+100;
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The solver is called as follows, and the solution plotted along 

with the analytical solution y_true.  The initial condition is 

�(0) = 2.

f = @(t,y) -10*y+100;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 10+(2-10)*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate 

y_analytical, because t is generated by the ode45

function.

The plot is shown on the next slide.
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Natural plus forced (total) response of an RC circuit 
(increasing exponential).
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The circuit model for input voltage �	 = 10�
�/�.� sin ���

�.��

and � = 0.1: 

0.1 ×
��
�� + � = 10�
�/�.� sin 2��

0.03

And assume the i.c. is �(0) = 0 V.

First re-write the equation in the required format:

��
�� = −10� + 100�
�/�.� sin 2��

0.03

Next define the following function file. Note that the order 

of the input arguments must be t and y.

f = @(t,y) -10*y+100* ...

exp(-1*t/0.3).*sin(2*pi*t/0.03);
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Result
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Extension to Higher-Order Equations 

To use the ODE solvers to solve an equation of 2nd order or 

higher, you must first write the equation as a set of first-order 

equations.

Example:

5
���
��� + 7

��
�� + 4� = � �

By re-arranging to get the highest derivative:

���
��� =

1

5
� � −

4

5
� −

7

5

��
��
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Example (Continue)
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We then change variables: �� � ��/��

Hence: ���/�� � ���/���

Also: �� � �. Hence we have two equations:
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Example (Continue)
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This form is sometimes called the Cauchy form or 
the state-variable form.

We now define a function that accepts two values of 
x and then computes the values of ���/�� and 
���/�� and stores them in a column vector. 
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���
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� ��
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�
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d = @(t,x) [x(2); sin(t)/5-4*x(1)/5-7*x(2)/5];

[t, x] = ode45(d, [0 6], [3 9]);

Here ��0� � 3 and ���0� � 9, and we solve for 0 � 	 � 6. Also � 	 � sin	�	�.
Note x is a matrix with two columns. The first column contains the values of x1
at the various times generated by the solver; the second column contains the 
values of x2. 

If you type plot(t, x), you will obtain a plot of both x1 and x2 versus t. 
Thus, type plot(t, x(:,1)) to see the result for y.

Example (Code)
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Result
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HW: Alternative Solution

Define the function in an m-file:

function xdot = d(t, x)

xdot(1) = x(2);

xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));

xdot = [xdot(1); xdot(2)];

Use the function to solve the ODE:

[t, x] = ode45(@d, [0 6], [3 9]); 

% notice the need to use handles

plot(t, x(:,1));
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Homework

• Solve as many problems from Chapter 9 
as you can

• Suggested problems:

• Solve: 9.1, 9.4, 9.14, 9.16, 9.23, 9.27, 9.31, 
9.34.
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