
Lecture 8: Calculus and
Differential Equations

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 9.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Numerical Methods

• MATLAB provides many functions that
support numerical solutions to common
math problems:
– Integration and Differentiation (Calculus)
– Finding zeros of a function
– Solving ordinary differential equations
– Many others

• Numerical analysis provides answers as
numbers, not closed-form solutions as in
analytical solutions (see next lecture for
symbolic math in MATLAB).

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The integral of f(x) is the area A under the curve of f (x)
from x ==== a to x ==== b.

� = 	� � � ��
�

�

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Illustration of Numerical Integration: (a) rectangular method
and (b) more accurate trapezoidal method.

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

>> x = linspace(0,pi,10);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9797

>> x = linspace(0,pi,100);

>> y = sin(x);

>> A = trapz(x,y)

A =

1.9998

trapz(x,y)

Uses trapezoidal
integration to compute
the integral of y with
respect to x, where the
array y contains the
function values at the
points contained in the
array x.

� � � sin � ��
�

�

� 	cos � �

� � 1 	 	1 � 2

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Simpson’s Rule

• Another approach to
numerical integration is
Simpson’s Rule, which
divides the integration
range [a, b] into an even
number of sections and
uses a different
quadratic function to
represent the integrand
for each panel.

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

quad(fun, a, b)

quad(fun, a, b, tol)

quadl(fun,a,b)

dblquad(fun, a, b, c, d)

triplequad(fun,a,b,c,d,e,f)

Uses an adaptive Simpson’s rule to compute

the integral of the function whose handle is

fun, with a the lower limit and b the upper

limit. The function fun must accept a vector

argument. The parameter tol is optional, and

indicates the specified error tolerance.

Uses Lobatto quadrature to compute the

integral of the function fun. The rest of the

syntax is identical to quad.

computes the integral of f(x,y) from x = a to b,

and y = c to d. The function fun must accept a

vector argument x and scalar y, and it must

return a vector result.

computes the integral of f(x,y,z) from x = a to

b, y = c to d, and z = e to f. The function must

accept a vector x, and scalar y and z.

Important numerical integration functions:

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Although the quad and quadl functions are

more accurate than trapz, they are restricted to

computing the integrals of functions and cannot be

used when the integrand is specified by a set of

points. For such cases, use the trapz function.

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB function quad implements an adaptive

version of Simpson’s rule, while the quadl function is

based on an adaptive Lobatto integration algorithm.

To compute the integral of sin(x) from 0 to π, type

>> A = quad(@sin,0,pi)

The answer given by MATLAB is 2.0000, which is correct.

We use quadl the same way; namely,

>> A = quadl(@sin,0,pi).

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

To integrate cos(x2) from 0 to 2�, create the function in

an m-file:

function yy = cossq(x)

yy = cos(x.^2);

Note that we must use array exponentiation. Then quad

function is called as follows:

>> quad(@cossq, 0, sqrt(2*pi))

ans =

0.6119

Or you can use an anonymous function:

>> f = @(x)(1./(x.^3 - 2*x - 5));

>> quad(f, 0, 2)

ans =

-0.4605 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

A = dblquad(fun, a, b, c, d) computes the integral of f(x,y)

from x = a to b, and y = c to d. Example: f(x,y) = xy2.

>> fun = @(x,y) x.*y^2;

>> A = dblquad(fun, 1, 3, 0, 1)

A =

1.3333

A = triplequad(fun, a, b, c, d, e, f) computes the

triple integral of f(x,y, z) from x = a to b, y = c to d, and z = e to f.
Example: f(x,y,z) = (xy -y2)/z.

>> fun = @(x,y,z)(x*y - y^2)/z;

>> A = triplequad(fun, 1,3, 0,2, 1,2)

A =

1.8484

Note: The function must accept a vector x, but scalar y and z.

Double and Triple Integrals

��� �, � ����
�

�

�

�

���� �, �, � ������
�

�

�

�

�

�

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Be careful: function singularity

>> f = @(x) (1./(x-1));

>> quad(f, 0, 2)

Warning: Infinite or Not-

a-Number function value

encountered.

> In quad at 113

ans =

NaN

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-100

-80

-60

-40

-20

0

20

40

60

80

100

� 1
1
 � ��

�

�

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Numerical differentiation: Illustration of estimating the
derivative dy////dx.

��
�� � lim

∆�→�

∆�
∆�

��
�� � ��
 ��

��
 ��

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB provides the diff function to use for computing

derivative estimates.

d = diff(y), where y is a vector of n elements, the

result is a vector d containing n − 1 elements that are the

differences between adjacent elements in y. That is:

d=[y(2)-y(1), y(3)-y(2),..., y(n)-y(n-1)]

For example:

>> y = [5, 7, 12, -20];

>> diff(y)

ans =

2 5 -32

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

step = 0.001;

x = 0 : step : pi;

y = sin(x.^2);

d = diff(y)/step;

% an approximation

% to derivative

% 2.*x.*cos(x.^2)

plot(x,y,'k',x(2:end),d,'--');

legend('f(x)', 'df/dx');

0 0.5 1 1.5 2 2.5 3 3.5
-8

-6

-4

-2

0

2

4

6

f(x)

df/dx

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Ordinary Differential Equations

• An ordinary differential equation (ODE) is an
equation containing ordinary derivatives of
the dependent variable.

• An equation containing partial derivatives
with respect to two or more independent
variables is a partial differential equation
(PDE).

• We limit ourselves to ODE that must be
solved for a given set of initial conditions.

• Solution methods for PDEs are an advanced
topic, and we do not look at them.

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Several Methods

• Several numerical methods to solve ODEs.
• Examples include:

– Euler and Backward Euler methods
– Predictor-Corrector method
– First-order exponential integrator method
– Runge-Kutta methods
– Adams-Moulton methods
– Gauss-Radau methods
– Adams-Bashforth methods
– Hermite–Obreschkoff methods
– Fehlberg methods
– Parker–Sochacki methods
– Nyström methods
– Quantized State Systems methods

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Multiple Solvers

• MATLAB offers multiple ODE solvers, each uses
different methods.

• Ode23: Solves non-stiff differential equations, low
order method.

• ode45: Solves non-stiff differential equations,
medium order method: uses a combination of fourth- and
fifth-order Runge-Kutta methods.

• ode23s: Solves stiff differential equations, low order
method.

• ode15i: Solves fully implicit differential equations,
variable order method.

• And so on.
• We will limit ourselves to the ode45 solver.

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example: Find the response of the first-order RC circuit .

� ���	 + � = 0

� 0 =
�			(�.
.)

� ���	 + � =
�

� 0 =
�			(�.
.)

�() = � 0 ��	/
		(��	����	��������)

� 	 =
� + (� 0 −
�)��	/
		(�	��	��������)

�� 	 =
��
�	

�� 	 =
���
�	�

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solving First-Order Differential Equations

First write the equation as dy/dt = f(t,y) then solve it using this syntax:

[t,y] = ode45(@f,tspan,y0)

where @f is the handle of the function file whose inputs must be t and

y, and whose output must be a column vector representing dy/dt; that
is, f(t,y). The number of rows in the output column vector must equal
the order of the equation.

The array tspan contains the starting and ending values of the

independent variable t, and optionally any intermediate values.

The array y0 contains the initial values of y. If the equation is first
order, then y0 is a scalar.

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for zero input voltage �	 and � = 0.1 is:

0.1 ×
��
�� + � = 0

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:

�

�
= −10�

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y;

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solver is called as follows, and the solution plotted along

with the analytical solution y_true. The initial condition is

�(0) = 2.

f = @(t,y) -10*y;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 2*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate

y_analytical, because t is generated by the ode45

function.

The plot is shown on the next slide.

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Free (natural) response of an RC circuit
(decaying exponential).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time(s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

ODE solver

Actual

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for input voltage �	 = 10� and � = 0.1:

0.1 ×
��
�� + � = 10

And the i.c. is �(0) = 2 V.

First re-write the equation in the required format:

��
�� = −10� + 100

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y+100;

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The solver is called as follows, and the solution plotted along

with the analytical solution y_true. The initial condition is

�(0) = 2.

f = @(t,y) -10*y+100;

[t, y] = ode45(f, [0 0.5], 2);

y_analytical = 10+(2-10)*exp(-10*t);

plot(t,y,'o', t, y_analytical);

legend('ODE solver', 'Actual');

xlabel('Time(s)');

ylabel('Capacitor Voltage');

Note that we need not generate the array t to evaluate

y_analytical, because t is generated by the ode45

function.

The plot is shown on the next slide.

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Natural plus forced (total) response of an RC circuit
(increasing exponential).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

11

Time(s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

ODE solver

Actual

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The circuit model for input voltage �	 = 10�
�/�.� sin ���

�.��

and � = 0.1:

0.1 ×
��
�� + � = 10�
�/�.� sin 2��

0.03

And assume the i.c. is �(0) = 0 V.

First re-write the equation in the required format:

��
�� = −10� + 100�
�/�.� sin 2��

0.03

Next define the following function file. Note that the order

of the input arguments must be t and y.

f = @(t,y) -10*y+100* ...

exp(-1*t/0.3).*sin(2*pi*t/0.03);

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

0 0.2 0.4 0.6 0.8 1 1.2
-10

-5

0

5

10

Time (s)

A
p
p
lie

d
 V

o
lt
a
g
e

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

1

Time (s)

C
a
p
a
c
it
o
r

V
o
lt
a
g
e

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Extension to Higher-Order Equations

To use the ODE solvers to solve an equation of 2nd order or

higher, you must first write the equation as a set of first-order

equations.

Example:

5
���
��� + 7

��
�� + 4� = � �

By re-arranging to get the highest derivative:

���
��� =

1

5
� � −

4

5
� −

7

5

��
��

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example (Continue)

���

���
�

1

5
� � �

4

5
� �

7

5

��

��

We then change variables: �� � ��/��

Hence: ���/�� � ���/���

Also: �� � �. Hence we have two equations:

���

��
� ��

���

��
�

1

5
� � �

4

5
�� �

7

5
��

30

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example (Continue)

���

��
� ��

���

��
�

1

5
� � �

4

5
�� �

7

5
��

This form is sometimes called the Cauchy form or
the state-variable form.

We now define a function that accepts two values of
x and then computes the values of ���/�� and
���/�� and stores them in a column vector.

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

���

��
� ��

���

��
�

1

5
sin �

4

5
��

7

5
��

d = @(t,x) [x(2); sin(t)/5-4*x(1)/5-7*x(2)/5];

[t, x] = ode45(d, [0 6], [3 9]);

Here ��0� � 3 and ���0� � 9, and we solve for 0 � 	 � 6. Also � 	 � sin	�	�.
Note x is a matrix with two columns. The first column contains the values of x1
at the various times generated by the solver; the second column contains the
values of x2.

If you type plot(t, x), you will obtain a plot of both x1 and x2 versus t.
Thus, type plot(t, x(:,1)) to see the result for y.

Example (Code)

32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Result

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

7

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

HW: Alternative Solution

Define the function in an m-file:

function xdot = d(t, x)

xdot(1) = x(2);

xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));

xdot = [xdot(1); xdot(2)];

Use the function to solve the ODE:

[t, x] = ode45(@d, [0 6], [3 9]);

% notice the need to use handles

plot(t, x(:,1));

34

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 9
as you can

• Suggested problems:

• Solve: 9.1, 9.4, 9.14, 9.16, 9.23, 9.27, 9.31,
9.34.

35

